Particulate emissions from diesel engines: correlation between engine technology and emissions
نویسندگان
چکیده
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.
منابع مشابه
Influence of Biodiesel from Egyptian Used Cooking Oils on Performance and Emissions of Diesel Engine
Due to diminishing petroleum reserves and the environmental negative effects of exhaust gases from diesel engines, alternative fuels for diesel engines are becoming increasingly important Egyptian waste cooking oils have special specifications because it expose to high temperatures during use for long hours. In the present experimental study, the performance and emissions of a four strokes, sin...
متن کاملMulti-Dimensional Modeling of the Effects of Spilt Injection Scheme on Performance and Emissions of IDI Diesel Engines
One of the important problems in reducing of pollutant emission from DI and IDI diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that makes the chance to shift the trade-off curve closer to origin. At the present work, the effect of split injection on the combustion process and emissions of a cylinder IDI diesel engine under the specification...
متن کاملAsh Impacts on Gasoline Particulate Filter Performance and Service Life by Nicholas
New regulations in the United States and Europe, designed to address climate change concerns by reducing greenhouse gas emissions, are causing increased use of gasoline direct-injection (GDI) engines in light-duty vehicles (LDV). Separate new regulations that aim to reduce particulate emissions to address air pollution concerns are taking effect concurrent with greenhouse gas limitations in bot...
متن کاملRegulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 201...
متن کاملParticulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).
Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years...
متن کامل